
How Moderate-Sized RISC-Based SMPs
Can Outperform Much Larger

Distributed Memory MPPs

by D. M. Pressel, Walter B. Sturek,
J. Sahu, and K. R. Heavey

Al&l-R-2062 October 1999

Approved for public release; distribution is unlimited.

. .

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

Citation of manufacturer’s or trade names does not con$itute an
official endorsement & approval of the use thereof.

Dekroy this report when it is no longer need&l. Do not return
it to the 0righuSor.

Army Research Laboratory
Aberdeen Proving Ground, MD 210055067

ARL-TR-2062 October 1999

How Moderate-Sized RISC-Based SMPs
Can Outperform Much Larger Distributed
Memory MPPs

D. M. Pressel, Walter B. Sturek, J. Sahu, and K. R. Heavey
Corporate Information and Computing Directorate, ARL

Approved for public release; distribution is unlimited.

Abstract

Historically, comparisons between computer systems were based primarily on theoretical
peak performance. Today, comparisons based on delivered levels of performance are frequently
used. This, of course, raises a whole host of questions concerning methodology. From the
standpoint of the user, delivered performance frequently refers to how fast a job runs. However,
is it reasonable to base this measurement on running the same algorithm on all of the computers?
When comparing some combination of mainframes and vector supercomputers, the answer is
probably yes. The same holds true when comparing the performance of large distributed memory
MIMD MPPs. However, when comparing the algorithms of choice used on these two classes
of platforms, one frequently finds that the algorithms are quite different. Furthermore, the
amount of work (the number of FLOPS) associated with each algorithm can also be quite
different.

While troubling, this dichotomy has been largely unavoidable. This implies that for an MPP
to have the same level of delivered performance as the mainframes and the vector
supercomputers, it must have a significantly greater level of performance when measured in
terms of FLOPS. Recent advances involving moderate-sized RISC-based SMPs have allowed
us to solve this problem. The net result is that for some problems a 128 processor Origin 2000
can deliver levels of performance that might require the use of a 500 + processor MPP using more
traditional approaches.

ii

Acknowledgments

This work was made possible through a grant of computer time by the Department of Defense

(DOD) High Performance Computing Modernization Program. Additionally, it was funded as part

of the Common High Performance Computing Software Support Initiative administered by the DOD

High Performance Computing Modernization Program.

*..
111

INTENTIONALLY LEFT BLANK.

iV

Table of Contents

1.

2.

3.

4.

5.

6.

Acknowledgments ..

List of Figures ..

List of Tables ...

Introduction ...

Delivered Performance ...

Loop-Level Parallelism ...

Speedup ..

Conclusions ..

References ..

Glossary ..

Distribution List ..

Report Documentation Page ...

. . .
111

vii

vii

1

4

6

8

14

15

17

19

23

V

bTTENTIONALLY LEFT BLANK.

Vi

List of Figures

Figure

1. Predicted Speedup From the Parallelization of a Problem With a Fixed Problem
Size 7

2. Predicted Speedup for a Loop With 15 Units of Parallelism . 12

3. Performance Results for the One-Million-Grid-Point Data Set . 13

4. Performance Results for the 59-Million-Grid-Point Data Set .,.....,....,.,.,,.....,.,......... 14

List of Tables

Table Page

1. The Number of Processors Required to Achieve a Specified Level of Delivered
Performance Using Traditional Techniques . 9

2. The Speedup Achieved When Using the F3D Code Parallelized Using
Loop-Level Parallelism on SGI Origin 2000’s . 9 ~

3. The Number of Processors That One Would Normally Use When Using an MPP
and Traditional Techniques to Process the Test Cases . 11

4. Predicted Speedup for a Loop With 15 Units of Parallelism . 12

vii

INTENTIONALLY LEFT BLANK.

. . .
Vlll

1. Introduction

.

For a given job, one can define the Delivered Performance such that

Delivered Performance = Theoretical Peak Performance * Total EfJiciency,

where

Total Eficiency = Algorithmic Eficiency * Serial Eflciency * Parallel EfJiciency.

Traditionally, many researchers using parallel computers have ignored the question of

Algorithmic Efficiency and/or Serial Efficiency, preferring to stress Parallel Efficiency. A few

people have even gone so far as to assume that all jobs on all machines have similar levels of

efficiency, and therefore, all one needs to know is the Theoretical Peak Performance for the

machines in question.

A direct consequence of this attitude has been the reaction by many users of vector computers

who point out that while the parallel computers may be delivering higher levels of FLOPS, the

vector computers will frequently have better wall clock time. Even when one takes into account the

relative costs of the machines, an important consideration in throughput oriented environments, the

vector machines will frequently fare much better than the raw numbers might indicate. Based on

these observations, it is clear that one needs to consider Algorithmic Efficiency and Serial Efficiency

as well as Parallel Efficiency when evaluating projects that use parallel computers.

When one compares the architectures of Cray vector computers (e.g., the C90), traditional MPPs

(e.g., the Cray T3E or the IBM SP), and RISC*-based SMPs (e.g., the SGI Origin 2000 or the SUN

HPC lOOOO), one finds significant differences in the design principles on which these systems are

based. The Cray vector computers have vector processors, a low latency very high bandwidth

* Definitions for boldface text can be found in the glossary.

1

memory system, and make very few assumptions about data locality or data reuse. In fact, the very

nature of their design tends to discourage attempts to tune for data locality or reuse.

Traditional MPPs have an intermediate level of memory latency and bandwidth. Most of these

systems now use RISC processors with moderate-sized caches and some design features that

facilitate streaming data into and out of the processor. Experiments reported by the NAS group at

NASA Ames and an analysis performed by David O’Neal and John Urbanic at the Pittsburgh

Supercomputing Center indicate that the memory system limitations on these systems result in a

lower level of efficiency than with comparable codes running on the Cray vector machines (Saini

1996,1997; O’Neal and Urbanic 1997).

RISC-based SMPs tend to have longer memory latencies and somewhat lower memory

bandwidth than the MPPs. In general, they also have no special features designed to facilitate the

streaming of data into and out of the processor. On the other hand, they are usually equipped with

at least 1 MB of cache per processor. Codes that have been tuned to take advantage of this cache

can in many cases reduce the rate of cache misses, that miss all the way back to main memory, to less

than 1%. As a result, for some codes, it is possible to achieve serial levels of performance that

actually exceed the performance achieved on MPPs (both in terms of absolute single processor

performance and in terms of the percentage of peak). However, the serial performance for codes that

were only tuned to run on an MPP may fall short of what is normally seen on an MPP (Sahu et al.

1997, 1998).

From this discussion, it should be clear that different classes of machines are likely to deliver

different percentages of peak performance. Furthermore, the delivered level of performance is likely

to strongly depend on the quality of the tuning (this includes the vector machines, since the

production of good vectorizable code requires the mastery of multiple complementary techniques).

Finally, the ability to deliver well-tuned code will frequently depend on the design of the hardware

itself.

2

For the rest of the discussion, it will be assumed that the codes are well tuned for serial

performance and that the serial performance achievable with the MIPS RlOK, HP PA-8000, Alpha

21164 (as configured for the T3E), and the IBM P2SC are all comparable. This means that in terms

of efficiency, the MIPS RlOK and the IBM P2SC have a significant lead over the other two chips

(this agrees with published results as well as information that the author has received in private

briefings). It is also assumed that the achievable serial efficiency of the MIPS RlOK and the IBM

P2SC approaches and, in some cases, matches that seen on Cray vector machines.*

The remainder of this report will focus on parallel efficiency and algorithmic efficiency, with

most of the emphasis being on the latter. The assumption here is that in many cases one can produce

parallel efficiencies that are close to loo%.+

This leaves the question, What is the algorithmic efficiency? While it is hard to identify what

one means by an algorithmic efficiency of lOO%, it is generally easy to define the relative

algorithmic efficiency of two approaches by comparing the number of floating point operations

required to achieve a solution.*

The important point here is to recognize that many parallelized programs have a significantly

lower algorithmic efficiency than do the programs normally run on serial/vector processors.

Evidence will be given that it is, in some cases, now possible to avoid the need to use less efficient

algorithms. The downside is that the approaches that lead to this conclusion are, in many cases, not

highly scalable. In some cases, they may work on a range of SMPs and MPPs, while in other cases,

they will only work on SMPs. However, even with these limitations, it is possible that these

l To a first approximation, the preceding assumptions seem to be nearly independent of the processor speeds in
question. This probably means that each of these designs is strongly limited by the performance of the memory

’
system and/or other system components.

$
In situations where this is not likely to be the case, some discussion will be made of what the predicted behavior is.
Ideally, this comparison should be made on a single machine, even if the different algorithms are not normally all used
on the same machine. This way, one is measuring differences in the algorithms, not in the compilers. However, even
here, it is important that if operations are normally performed N times, where N is the number of processors, then if
one is comparing using three different algorithms, one to be run on a vector machine with 16 processors, one on an
SlvIP with 100 processors, and one on an MPP with 500 processors, then the operation counts should reflect the
intended usage.

3

approaches will allow the performance of a 64-128 processor job to equal or exceed the performance

of a job using a 5 12 processor MPP written using traditional techniques.

2. Delivered Performance

If one asks most users of computer equipment what job characteristics they consider to be

important, the replies seem to center on two themes:

(1) The accuracy of the results.*

(2) The time to completion.+

While, in general, one assumes that these two themes are independent, in reality, that has rarely

been the case. In a resource-constrained environment, it is easy to see how the sophistication of the

calculations that one can reasonably hope to carry out will be limited. What may be less obvious is

that there are other ways in which the search for a rapid time to completion can adversely affect the

accuracy of the results.

A common problem, which comes from the field of CFD, is that, frequently, the most efficient

serial or vectorizable algorithm uses what is known as an Implicit approach to solving the Navier-

Stokes equations. Unfortunately, such an approach has generally resisted attempts to parallelize it.

An example of this problem can be found in the F3D code from NASA Ames Research Center,

which uses a block tridiagonal solver based on Gaussian Elimination. Due to dependencies in this

part of the code, even though this solver handles three-dimensional problems, each of the sweeps

through the data can only be parallelized in a single direction. In the past, three methods have been

used to get around this problem:

*
’

In general, this is a relative concept and refers to the accuracy conforming to the expectations for a particular run.
This may either apply to the time required to run a single job or the time required to run a complete set of jobs. In the
former case, one is usually limited to using some or all of a single computer. In the latter case, one is usually limited
to using some or all of the resources at one or a small number of computer centers.

4

(1) In theory, one can replace Gaussian Elimination with a more parallelizable algorithm such

as cyclic reduction. Unfortunately, this approach can itself result in two major problems:

l It increases the operation count by a factor of LOG2 (N), where N is the number of

processors being used. Clearly, this has the effect of decreasing the algorithmic

egiciency.’

l Since this algorithm requires the use of a large number of relatively small messages, it was

much better suited for use on SIMD (Flynn 1972) machines than for use with today’s

MIMD (Flynn 1972) machines.

(2) One can use an entirely different algorithm, such as one of the Explicit algorithms, which are

known to be highly parallelizable. Unfortunately, the use of these algorithms will, in general,

. substantially increase the operation count required to obtain a solution. In other words, once

again, the algarithmic eflciency suffers.

(3) Alternatively, one can use domain decomposition as the basis for parallelization.

Unfortunately, this approach can severely compromise the convergence behavior of the

algorithm. A number of approaches have been suggested to deal with this problem, but in

all cases, the algorithmic ecfficiency will to some degree suffer’ (Wang and Tafti 1997; Singh,

Uthup, and Ravishanker, 1998[?]).

The key point here is that:

Delivered Pqfbrmance = Theoretical Peak Performance * Total Eflciency,

where

Total Eflciency = Algorithmic EfJiciency * Serial Eflciency * Parallel Eficiency.

* using51
’ Many of

2 processors will
these approaches

increase the operation count for this part of the solver by ’ a factor of 9.
will also limit the available parallelism and/or adversely affect the parallel efficiency.

5

Therefore, any changes that result in a decrease in the Algorithmic E’ciency will directly affect

the Delivered Performance, even though the performance as measured by MFLOPS might be quite

high.* Using this unit, DeEivered Performance is inversely proportiotial to the Time to Completion

for a job (assuming that the processors are dedicated to this job).

Figure 1 shows an example of this for a fixed-sized problem when one attempts to scale to large

numbers of processors. Two things that are important to note here are:

(1) For sufficiently large numbers of processors, the combined effects of Amdahl’s Law and the

costs of interprocessor communication will limit the maximum achievable level of

performance. Therefore, for all but the largest problem sizes, and given enough processors,

the parallel efficiency may be far less than 100%.

(2) The effect of going to less efficient algorithms in an attempt to improve the parallelizability

of the code can virtually eliminate the perceived benefits of having a highly parallelizable

code.

If one applies Gustafson’s (1988) concept of scaled speedup, one can overcome some if not all

of the limiting effects attributable to Amdahl’s Law and interprocessor communication. However,

this concept will have little impact on the loss of algorithmic efficiency. Therefore, the basic

premise behind Figure 1 (and this report) remains intact.

3. Loop-Level Parallelism

It turns out that there is an alternative way in which one can parallelize Implicit CFD codes,

which does not result in a reduction of their Algorithmic Eficiency. This approach is based on

parallelizing the individual loops and is therefore referred to as Loop-Level Parallelism. Of course,

* The units for Delivered Performance are Useful MFLOPS.

6

IDEAL LINEAR SPEEDUP 0” -----
------ AMDAHL’SIAW

0’
0’

-.-.-.-. AMDAHL’S LAW +COMM. COSTS
A AMDAHCS LAW + COMM. COSTS + LESS EFFICIENT ALGORITHM

0’
/’

0’

,; TYPICAL HIGH PERFORMANCE VECTOR PROCESSORS

0’
0’

0’

0’
0’

.’

0’ “-

0’ 0’

0’ 0’ ”

0’
0’ 0’

0’
0’ 0’

___********------a

”
0’ *_*---- **__**----

l ----

” 0’ _ _**_.. .-.-.-.-.-.
./J.:: _._._._.-. -.-.-

,_._._._._,_._._._._.-.-.-.-.-.-.~-

’ *&.’ ‘<*‘C
45.

NUMBER OF PROCESSORS USED

Figure 1. Predicted Speedup From the Parallelization of a Problem With
a Fixed Problem Size.

if this method is so great, then one might wonder why it was not the method of choice all along. The
following are some of the reasons for this.

Loop-Level Parallelism in general is based on the same parallelism used to produce vector code.

Therefore if the program is to run in parallel on a vector computer such as the Cray C90, it will be

difficult to produce a code that exhibits both good vector performance and good parallel performance

at the same time.

While in theory it is possible to implement Loop-Level Parallelism using some form of

message-passing code, the result can be a huge number of calls to the message-passing library (either

to implement matrix transpose operations and/or to manually implement some form of coherency

protocol). By comparison, when Loop-Level Parallelism is implemented on a shared memory

system, it is not uncommon to leave the loops in the boundary condition routines unparallelized (in

general, these loops may represent 80% or more of the loops in the program, but less than 1% of the

7

total work). This makes it both painful to implement Loop-Level Parallelism using message-passing

code and, in general, results in code that is very inefficient.

Traditionally, there have been two types of shared memory platforms. The first type is based on

a small number of vector processors. This tends to make the system very expensive, while limiting

one’s ability to show good speedup. As a result, many codes run on vector processors were never

parallelized. The second type of system was based on inexpensive mass-market microprocessors.

Unfortunately, until recently, the aggregate peak speed of systems based on this design was generally

much less than the peak speed of one processor on a state-of-the-art vector machine from Cray

Research.

Therefore, until recently, none of the machines commonly used for High Performance Computing

were well suited for use with Loop-Level Parallelism. It was not until the advent of the SGI Power

Challenge that one could make a clear case for investigating this approach. Even then, enough

people equated Loop-Level Parallelism with Automatic Parallelization (a concept that doesn’t work

very well) that they failed to properly appreciate the potential for this approach (Theys, Braun, and

Siegel 1998). In fact, even now there are only a few systems (e.g., the SGI Origin 2000) for which

a compelling case can be made (in some cases, the bottleneck is the hardware, while in other cases,

limitations in the operating system and/or the compilers are at fault).

Table 1 shows the potential benefit of using Loop-Level Parallelism in conjunction with a

well-designed shared memory system, Table 2 shows the actual speedup that was achieved for

different problem sizes when using Loop-Level Parallelism with an SGI origin 2000 to run the F3D

code for a common test case.

4, Speedup

Up until now, this discussion has assumed that one can easily achieve linear speedup. In reality,

this is freqluently not the case. Therefore, let us consider what is likely to be the case when using

8

Table 1. The Number of Processors Required to Achieve a Specified Level of Delivered
Performance Using Traditional Techniques

Speedup Relative to Minimum No. of Processors Required When Using II
One Processor

16
32
48
64
80

Domain Decomposition Cyclic Reduction
64 108
181 256
333 418
512 589
716 767

Table 2. The Speedup Achieved When Using the F3D Code Parallelized Using
Loop-Level Parallelism on SGI Origin 2000’s

II No. of Processors Used I Grid Size Speedup Relative to One

61 59.4 48.1
61 124.0 48.6

117 59.4 66.9

II 88 124.0 65.7 I 1
II 116 I 124.0 I 81.4 11
Note: Except for the largest test case, runs using fewer than 64 processors were run on either 32 or 64 processor

Origin 2000’s. Due to the memory requirements of the largest test case, all runs were made on a 128
processor Origin 2000. For all of the remaining cases, runs were made on a preproduction 128 processor
origin 2ooo.

9

both the traditional approaches to parallelization and loop level parallelism. Based on the numbers

in Table 1, it is clear that when using traditional approaches, one will likely need a large number of

processors. However, for fixed-size problems, Amdahl’s Law predicts that there is enough serial

code remaining that one will asymptotically approach a maximum level of performance when using

large numbers of processors. The traditional counter argument has been to use the concept of scaled

speedup (Gustafson 1988). With this concept, the available parallelism and the available work are

assumed to scale linearly with the problem size. Therefore, as the problem size gets bigger, one can

use additional processors while keeping the run time constant. This concept also assumes that the

amount of work associated with the serial code grows very slowly, if at all, and can therefore be

ignored.

A common rule of thumb when parallelizing programs on distributed memory MPPs is that one

should use the smallest number of processors possible, with the amount of memory per processor

usually being the limiting factor. Most modern MPPs are now equipped with between 64 MB and

1 GB of memory per processor, with somewlrere around 10-20 MB of memory per processor

reserved for use by the operating system. Based on these numbers, Table 3 shows how many

processors one would normally expect to use for the test cases mentioned in Table 2.

There is no guarantee that one will actually get good scalability all the way to the upper bounds

listed in Table 3. Rather, the upper bound is based on the impossibility of running the job if there

is not enough memory. However, the rule of thumb indicates that it is questionable if one will see

linear speedup when using even larger numbers of processors.

When comparing Tables 1 and 3, it becomes apparent that there are some problems. The smaller

test cases are unlikely to produce speedups much in excess of a factor of 16. While in theory the

larger problem sizes will fare better, there is a second, less obvious problem. Very few of the

currently installed MPPs are configured with 5 12 or more processors. Therefore, in many cases, one

will find it difficult, if not impossible, to use enough processors to get speedups of 64 or greater.

10

Table 3. The Number of Processors That One Would Normally Use When Using an MPP
and Traditional Techniques to Process the Test Cases

.
Grid Size

I
Recommended No. of

(Millions of Grid Points) Processors II

3.0 2-30
6.0 3-60

12.0 6-120
23.8 12-240

Turning our attention to programs parallelized using Loop-Level Parallelism, the following

question comes up: What kinds of speedup is one likely to see from these programs? The answer

here is a bit complicated. In general, the available parallelism will be a function of the smallest of

the grid dimensions. Therefore, the available parallelism will, at best, scale as the cube root of the

size of each zone. A direct result of this is that it no longer makes sense to talk about scaled

speedup. Instead, one is back at the problem of obtaining speedup for a fixed problem size.

The second problem is that when using Loop-Level Parallelism, the available parallelism is

frequently within an order of magnitude of the number of processors being used. Since there are an

integer number of iterations in a loop, the predicted speedup is no longer linear, but rather is a

stairstep.

Figure 2 and Table 4 show an example of this. This also means that, for smaller problems, one

may run out of parallelism in some/or all of the loops prior to using all of the processors in the

machine.

An additional complication with Loop-Level Parallelism is that since many of the loops will be

doing very little work, the overhead associated with parallelizing them may be so great as to result

in Parallel Slowdown! This situation is especially common in the boundary condition routines.

11

5 10 15

NUMBER OF PROCESSORS USED

Figure 2. Predicted Speedup for a Loop With 15 Units of Parallelism.

Table 4. Predicted Speedup for a Loop With 15 Units of Parallelism

No. of Processors

1
2
3
4

5-7
8-14

1s

Maximum Units of Parallelism
Assigned to a Single Processor

15
8
5
4
3
2
4

Predicted Speedup

1 .ooo
1.875
3.000
3.750
5.000
7.500

1s.rm-l

While in theory this problem should be less severe when dealing with larger problem sizes, the

reality of the situation is that the code will normally be tuned for the smaller problem sizes. While

in many cases it should be possible to reduce the amount of CPU time spent on serial code to 1%

or less of the total CPU time, this is enough for Arndahl’s Law to be a problem when using more

12

than about 50 processors. The combination of the stairstepping with Amdahl’s law explains why

the smaller test cases show limited speedup in Table 2.*

Figures 3 and 4 show all of these effects in a real problem. Figure 3 is for a relatively small

problem (less than 500 MB of memory), while Figure 4 is for a relatively large problem (over 20 GB

of memory). Our calculations indicate that the primary reason for the difference between the

predicted and measured levels of performance in these curves is Amdahl’s law.’

6000 .

1 = - ----‘*,?-s-
pc 5000 -----A----
2 -,.-..-..-..-.

2
f 4000 -

2
F
z 3000 -

E
P
.$! 2000 -

Cray C90
SGI Origin 2000 (32 processor system)

:- I
i ’

SGI Origin 200 (4 processor system)
SGI Origin 2000 (64 processor system) .I

I
Predicted performance
SGI Origin 2000 (128 processor system) i

(preproduction hardware and operating systern)ir

i
b

1000

0
0 10 20 N”E3ER

o”f”PFioCEssoFtss”usEo
70 80 90

Figure 3. Performance Results for the One-Million-Grid-Point Data Set.

* A third reason for the limited speedup is that the average memory latency on the 128 processor Grigin 2000 is slightly
longer than on the 32 and 64 processor systems. This has the effect of decreasing the serial efficiency from 30-40%

t
to about 25-30% on the 128 processor system.
The predicted curve is based on the assumption that one can achieve the same percentage of peak performance for
a single processor job on both the Cray C90 and on RISC-based machines such as the SGI Origin 2000. This does
not mean that one will achieve this without any work. Rather, it is assumed that a significant effort at tuning the
code was made on both platforms. Taking into account only the available level of parallelism (the stairstepping
effect), this expected level of performance is then extraploted out for multiprocessor runs. As such, the predicted
level of performance will, in general, equal or exceed the observed level of performance and serve as an excellent
reference point for dete mining how well the system is performing.

13

Predicted performance

5
B

150 (preproduction hardware and

B
operating system)

ti?
r r/) 100

;

z
B
h 02 50

0
0 20 N&SER &tOCESS& 100 120

USED

Figure 4. Performance Results for the 59-Million-Grid-Point Data Set.

5. Coklusions

The combination of Loop-Level Parallelism and RISC-based SMPs has been shown to be a

promising approach to parallelizing a class of highly efficient algorithms that had previously resisted

attempts at parallelization. Additionally, evidence has been presented that demonstrates that, in

general, the resulting code achieves a much higher level of delivered performance than traditional

techniques might be expected to deliver. While it is not practical to look at all possible approaches

in detail and to determine what their effect is on the Total Efficiency in all cases, it seems likely that

the benefits of using our approach are real.

An additional consideration is the availability of the hardware. SGI and SUN have both been
quite successful at selling moderate-sized RISC-based SMPs. While IBM and Cray (a subsidiary

of SGI) have sold a significant number of MPPs, very few of them had 512 or more processors.

Therefore, even when in theory the performance of a large MPP using traditional methods should

exceed our results, it is far from certain that one will actually be able to obtain access to enough

processors in a single machine at one time.

14

6. References

Flynn, M. J. “Some Computer Organizations and Their Effectiveness.” IEEE Transactions
Computers, C-21, pp. 948-60, 1972.

Gustafson, J. L. “Reevaluating Amdahl’s Law.” Communications of the ACM, vol. 3 1, no. 5,
pp. 532-533, The Association for Computing Machinery, Inc., May 1988.

O’Neal, D., and J. Urbanic. “On Performance and Efficiency: Cray Architectures.” Parallel
Applications Group Pittsburgh Supercomputing Center, electronically published at
http://www.psc.edu/-oneal/eff/eff.html, August 1997.

Sahu, J., D. M. Pressel, K. R. Heavey, and C. J. Nietubicz. “Parallel Application of a Navier-Stokes
Solver for Projectile Aerodynamics.” Parallel Computational Fluid Dynamics, Recent
Developments and Advances Using Parallel Computers. Proceedings of the Parallel CFD’97
Conference, Manchester, UK, 19-21 May 1997, edited by D. R. Emerson, J. Periaux, A. Ecer,
N. Satofuka, and P. Fox, Amsterdam: Elsevier, 1998.

Sahu, J., D. M. Pressel, K. R. Heavey, and C. J. Nietubicz. “Parallel Application of a Navier-Stokes
Solver for Projectile Aerodynamics.” Proceedings of the 1998 Army Science Conference, to be
published.

Saini, S. (ed.). “NAS Parallel Benchmarks, NPB 1 Data.” Electronically published at.
http://Science.nas.nasa.gov/Software/NPB/NPBlResults/index.html, 17 November 1996.

Saini, S. (ed.). “NAS Parallel Benchmarks, NPB 2 Data.” Electronically published at
http://Science.nas.nasa.gov/Software/NPB/NPB2Results/index.html, 17 November 1997.

Singh, K. P., Biju Uthup, and Laxmi Ravishanker. “Parallelization of Euler and N-S Code on 32
Node Parallel Super Computer PACE+.” Presented at the ADA/DRDO-DERA Workshop on
CFD, 1998(?).

Theys, M. D., T. D. Braun, and H. J. Siegel. “Widespread Acceptance of General-Purpose,
Large-Scale Parallel Machines: Fact, Future, or Fantasy?” IEEE Concurrency Parallel,
Distributed and Mobile Computing, JEEE Computer Society, January-March 1998.

Wang, G., and D. K. Tafti. “Performance Enhancement on Microprocessors With Hierarchical
Memory Systems for Solving Large Sparse Linear Systems.” The International Journal of
Supercomputing Applications, February 1997.

15

INTENTIONALLY LEFT BLANK.

16

Glossary

Cm>
Domain decomposition

FLOPS
mops

MPP
RISC
SIMD

SMP

Computational Fluid Dynamics
The process of splitting a small number of zones (some of which are

assumed to be large) into a moderate to large number of zones
(generally all of which are fairly small in size)

Floating-Point Operations Per Second
Million Floating-Point Operations Per Second
Multiple Instruction Multiple Data - a class of parallel computers as

defined in Flynn’s taxonomy
Massively Parallel Processor
Reduced Instruction Set Computer
Single Instruction Multiple Data - a class of parallel computers as

defmed in Flynn’s taxonomy
Symmetric Multiprocessor - a term normally only applied to shared

memory systems using hardware memory coherency protocols

17

hTENTIONALLY LEFT BLANK.

18

NO. OF
ORGANIZATION COPIES

2 DEFENSE TECHNICAL
INFORMATION CENTER
DTJC DDA
8725 JOHN J KINGMAN RD
STE 0944
FT BELVOJR VA 22060-6218

1 HQDA
DAMOFDQ
D SCHMIDT
400 ARMY PENTAGON
WASHINGTON DC 203 lo-0460

1 OSD
OUSD(A&T)/ODDDR&E(R)
RJTREW
THE PENTAGON
WASHINGTON DC 20301-7100

1 DPTY CG FOR RDA
US ARMY MATERIEL CMD
AMCRDA
5001 EISENHOWER AVE
ALEXANDRJA VA 22333-0001

1 INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN
PO BOX 202797
AUSTIN TX 78720-2797

1 DARPA
B KASPAR
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

1 NAVAL SURFACE WARFARE CTR
CODE B07 J PENNELLA
17320 DAHLGREN RD
BLDG 1470 RM 1101
DAHLGREN VA 22448-5 100

1 UdhZTARY ACADEMY
MATH SC1 CTR OF EXCELLENCE
DEPT OF MATHEMATICAL SC1
MADNMATH
THAYERHALL
WEST POINT NY 10996-1786

NO. OF
COPIES ORGANIZATION

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL DD
J J ROCCHJO
2800 POWDER MILL RD
ADELPHJ MD 20783-l 197

1 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CS AS (RECORDS MGMT)
2800 POWDER MILL RD
ADELPHJ MD 20783-l 145

3 DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI LL
2800 POWDER MILL RD
ADELPHJ MD 20783-l 145

ABERDEEN PROVING GROUND

4 DIR USARL
AMSRL CI LP (BLDG 305)

19

NO. OF
ORGANIZATION COPIES

1 PM CHSSI
JOHN GROSH
SUITE 650
111ONGLEBEROAD
ARLINGTON VA 2220 1

1 RICE UNIVERSITY
MCHNCL ENGRNG AND MTRLS SC1
MAREK BEHR
MS 321
6100 MAIN STREET
HOUSTIN TX 77005

1 COMMANDER
CODE C2892
CLINT HOUSH
1 ADMINISTRATION CIR
CHINA LAKE CA 93555

2 WL FIMC
STEPHEN SCHERR
BILL STRANG
BLDG 450
2645 FIlTH ST SUITE 7
WPAFB OH 45433-7913

1 NSWC
A B WARDLAW
CODE B44
SILVER SPRING MD 20903-5640

1 NAVAL RSRCH LAB
CODE 6400 JAY BORIS
4555 OVERLOOK AVE SW
WASHINGTON DC 20375-5344

1 NAVAL RSRCH LAB
CODE 6410
RAVI RAMAMURTI
WASHINGTON DC 20375-5344

1 ARMY AEROFLIGHT
DYNAMICS DIRECTORATE
ROBERT MEAKIN
MS 258 1
MOFFETT FIELD CA 94035-1000

1 NAVAL RSRCH LAB
CODE 7320
J W MCCAFFREY JR
HEAD OCEAN DYNAMICS AND
PREDICTION BRANCH
STENNIS SPACE CENTER MS 39529

NO. OF
ORGANIZATION COPIES

1

1

1

1

1

1

1

1

1

20

NAVAL RSRCH LAB
GEORGE HEBURN
RSRCH OCEANOGRAPHER CNMOC
BLDG 1020 RM 178
STENNIS SPACE CENTER MS 39529

US AIR FORCE WRIGHT LAB
WL FIM JOSEPH J S SHANG
2645 FIFI’H STREET STE 6
WPAFB OH 45433-7912

USAF PHILIPS LAB
OLAC PL RKFE
CPT SCOTT G WIERSCHKE
10 EAST SATURN BLVD
EDWARDS AFB CA 935247680

USAE WATERWAYS
EXPERIMENT STATION
CEWES HV C JEFFREY P HOLLAND
3909 HALLS FERRY ROAD
VICKSBURG MS 39180-6199

US ARMY CECOM RD&E CTR
AMSEL RD C2
BARRY S PERLMAN
FT MONMOUTH NJ 07703

SPAWARSYSCEN (D4402)
ROBERT A WASILAUSKY
BLDG 33 RM OO71A
53560 HULL ST
SAN DIEGO CA 92152-5001

US AIR FORCE RESEARCH LAB
INFORMATION DIRECTORATE
RICHARD W LINDERMAN
26 ELECTRONIC PARKWAY
ROME NY 13441-4514

US AIR FORCE RESEARCH LAB
PROPULSION DIRECTORATE
LESLIE PERKINS t
5 POLLUX DR
EDWARDS AFB CA 93524-7048

AIR FORCE RESEARCH LAB/DEHE
ROBERT PETERKIN
3550 ABERDEEN AVE SE
KIRTLAND AFB NM 87117-5776

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

1 SPACE & NAVAL WARFARE SYS CTR
CODE D7305 KEITH BROMLEY
BLDG 606 RM 325
53140 SYSTEMS ST
SAN DIEGO CA 92152-5001

1 UNVRSTY OF MINNESOTA
DEPT OF ASTRONOMY
PROF P WOODWARD
356 PHYSICS BLDG
116 CHURCH STREET SE
MINNEAPoLrs MN 55455

1 RICE UNTVERSITY
MCHNCL ENGRNG AND MTRLS SC1
TAYFUN TEZDUYAR DEPT CHRMN
MS 321 6100 MAlN ST
HOUSTON TX 77005

1 DIRECTOR
ARMY HIGH PERFORMANCE
COMPUTING RSRCH CTR
BARBARA BRYAN
1200 WASHINGTON AVE
SOUTH MxNNEAPoLIs MN 55415

1 DIRECTOR
ARMY HIGH PERFORMANCE

(I COMPUTING RSRCH CTR
GRAHAM V CANDLER
1200 WASHINGTON AVE
SOUTH MINNEAPOLIS MN 55415

ABERDEEN PROVING GROUND

15 DIRUSARL
AMSRL CI

NRADHAKRISHNAN
AMSRL CI H

c NIETuB1cz
AMSRL CI HA

W STUREK
AMARK
RNAMBURU

AMSRL CI HC
D PRESSEL
D HTSTEY
C ZOLTANI
A PRBSSLEY
TKENDALL
PDYKSTRA

AMSRL WM BC
H EDGE
JSAHU
KHEAVEY
P WEINACHT

1 NAVAL CMND CONTROL AND
OCEAN SURVEILLANCE CTR
L PARNELLHPC CRDNTR &DIR
NCCOSC RDTE DIV D3603
49590 LASSING ROAD
SAN DIEGO CA 9215206148

21

INTENTIONALLY LEFT BLANK.

22 ’

d RISC-Based SMPs Can Outperform Much Larger Distributed

D. M. Pressel, Walter B. Sturek, J. Sahu, and K. R. Heavey

U.S. Army Research Laboratory
A’ITNz AMSRL-CI-HC
Aberdeen Proving Ground, MD 21005-5067

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS 10.SPONSORING/MONITORING
AGENCY REPORT NUMBER

I
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

;

t

Historically, comparisons between computer systems were based primarily on theoretical peak performance. Today
comparisons based on delivered levels of performance are frequently used. This, of course, raises a whole host o
questions concerning methodology. From the standpoint of the user, delivered performance frequently refers to how fas
a job runs. However, is it reasonable to base this measurement on running the same algorithm on al1 of the computers?
When comparing some combination of mainframes and vector supercomputers, the answer is probably yes. The sanx
holds true when comparing the performance of large distributed memory MIMD MPPs. However, when comparing the
algorithms of choice used on these two classes of platforms, one frequently finds that the algorithms are quite different.
Furthermore, the amount of work (the number of F’LOPS) associated with each algorithm can also be quite different.

P

While troubling, this dichotomy has been largely unavoidable. This implies that for an MPP to have the same level 01
delivered performance as the mainframes and the vector supercomputers, it must have a significantly greater level oi
performance when measured in terms of FLOPS. Recent advances involving moderate-sized RISC-based SMPs have
allowed us to solve this problem. The net result is that for some problems a 128 processor Origin 2OfKl can deliva
levels of performance that might require the use of a 500 processor MPP using more traditional approaches.

"

14. SUBJECT TERMS 15. NUMBER OF PAGES

supercomputer, high performance computing, parallel processor, 25 .
computational fluid dynamics 16. PRICE CODE

17. SECURITY CLASSIFICATION 1 18. SECURITY CLASSIFICATION 1 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT

UNCLASSIFIED
NSN 7540-01-280-5500

OF THIS PAGE
UNCLASSIFIRD

OF ABSTRACT
UNCLASSIFIED I UL

23
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-l 8 298-l 02

13. ABSTRACT(Max\mum 200 words)

INTENTIOIt4LLY LEFT BLANK.

24

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers
to the items/questions below will aid us in our efforts.

1. ARL Report Number/Author ARL-TR-2062 (Pressel) Date of Report October 1999

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will
be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs
avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization,
technical content, format, etc.)

Organization

CURRENT
ADDRESS

Name E-mail Name

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old
or Incorrect address below.

OLD
ADDRESS

Organization

Name

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

